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Abstract-The new, very fast numerical technique for determining two-dimensional temperature distri- 
bution for n arbitrarily located heat receivers with phase-change is proposed. The algorithm is based on the 
simple explicit iteration scheme, and the phase-change problem is solved according to heat balance. Some 
numerical examples and possibilities of applications are discussed. This method can be used in predicting the 
shape of a frozen region and its time changes, with the region forming during rock-freezing before shaft- 

sinking. 

NOMENCLATURE 

specific heat of the medium before the 
phase-change ; 
specific heat of the medium after the phase- 
change ; 
volumetric latent heat of fusion; 
ratio of the surface of this part of the grid 
mesh which changed the state of aggre- 
gation to the whole surface of the grid 
mesh ; 
heat quantity abstracted out of the grid 
mesh during the n iteration step; 
heat quantity which should be abstracted 
out of a grid mesh to make the medium 
inside the mesh change the state of aggre- 
gation completely ; 
temperature of the phase-change of the 
medium ; 
temperature of the medium before the 
phase-change ; 
temperature of the medium after the phase- 
change ; 
temperature of the medium inside the (i, k) 
grid mesh in n iteration step; 

aT/an, normal derivative of the temperature; 
t, time; 

At = t(“+ r) - t(“), time interval between iteration steps. 

Greek letters 

thermal diffusivity; 
thermal diffusivity of the medium before 
the phase-change ; 
thermal diffusivity of the medium after the 
phase-change ; 
surface of a grid mesh ; 
surface of this part of a grid mesh which 
changed the state of aggregation during the 
n iteration step; 

density of the medium before the phase- 
change ; 
density of the medium after the phase- 
change. 

1. INTRODUCTION 

IN MANY technical processes it is necessary to at least 
have approximate information about the temperature 
distribution in media with arbitrarily located heat 
receivers with the phasechange. Therefore it is 
necessary to look for algorithms describing such a 
process with the accuracy sufficient from the technical 
point of view. 

The algorithm presented in this paper has been 
constructed to predict the shape of the frozen 
region and its time changes, with the region which 
forms during rock freezing before the shaft sinking. In 
the freezing process freezing holes (heat receivers) are 
located approximately on the circle diameter lo-20 m. 
The freezing process, lasting a few months causes the 
formation of a frozen rock ring which protects against 
water flooding during mining works. 

There are many algorithms offering numerical sol- 
utions to the cooling down problem with the phase 
change [l-5]. In the above-mentioned case, however, 
where the region considered is large and the time of the 
process is long, most of them cannot be applied on 
economical grounds. 

The algorithm presented here is characterized by a 
simplicity which makes the time of its computer 
execution comparatively short. The results’ accuracy 
makes it possible to put this algorithm into practice for 
simulating the freezing process. 

2. THE ALGORITHM DESCRIPTION 

We are considering a homogeneous and isotropic 
two-dimensional continuous medium. In this medium 
there are n arbitrarily located heat receivers. 
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We assume that : 
heat receivers have finite sizes; 
during the whole process the temperature of the 
receivers is constant; 
the temperature of the receivers is lower than the 
temperature of the phase-change of the medium; 
heat contact of the receivers with environment is 
ideal ; 
at the time of starting the process the medium 
temperature is constant ; 
far enough from the heat receivers the temperature 
distribution is time constant. 
To solve the problem of the temperature distri- 

bution and its time variations for such a model it is 
enough to solve general conduction equations sep- 
arately for those regions of the medium where the 
temperature is lower and higher than the phase-change 
temperature with the continuity condition on the 
phase boundary. 

Conducting equations are 

zZa,rs+$!) i=1,2; (la) 

continuity condition 

8T, c3T, 
aI x = a2 x 

on the phase-change boundary (lb) 

To find a numerical solution to these equations we 
used a finite-difference method. We chose ‘a simple 
explicit iteration scheme’, which in the case of a 
quadratic grid looks like this [6] : 

aAt 
7-f’;“= 7-I”:+- 

A2 

[Tj’!!I,k + TI”’ . , r + ?-$‘I:+, + 7-j”:-, - 4T3] (2) 

with the convergence condition 

At < 0.25 ; 

Equation (2) cannot be applied to grid meshes 
across which goes a phase-change boundary because a 
constant thermal diffusivity has been assumed in the 
formula. For such cases we use the following 
modification 

+ a@)( Ty , , t - T!y\) + a(“‘(Tj$+ I - Tr',) 

+ ac4'(Tj"k_, - Tjyk)] (4) 

in which coefficients a(l), a(‘), ac3), af4’ are selected 
according to the state of aggregation of the grid meshes 
which are in contact with the grid mesh (i, k). 

The following are possibilities of grid mesh contact : 
Both meshes are before the phase-change. Then the 
sufficient coefficient of thermal diffusivity in formula 

(4) is the same as the thermal diffusivity coefficient of 
the medium before the phase-change. 
Both meshes are after the phase-change. The thermal 
diffusivity coefficient for such contact is the same as 
the thermal diffusivity coefficient of the medium 
after the phase-change. 
Both meshes are in phase-change. The choice of a 
thermal diffusivity coefficient is of no importance 
because of the zero temperature difference. 
One of the grid meshes is before the phase-change 
and the other one is in or after the phase-change. We 
assume that the sufficient thermal diffusivity coef- 
ficient in equation (4) is the same as the thermal 
diffusivity coefficient of the medium before the 
phase-change. 
tie of the grid meshes is in the phase-change and the 
other one is after the phase-change. In this case we 
assume that the sufficient thermal diffusivity coef- 
ficient in (4) is 

a = a,p + al(l - p). (5) 

In making an analysis of the phase-change assume 
that, for the grid mesh (i, k), in the nth iteration step 
T{2 > T, and that the temperatures of the adjacent 
meshes are such that the temperature T$y: “calculated 
according to equation (4) is smaller than T,. That 
means that the phase change should start in this grid 
mesh in the interval of time t(“+ ‘) - t(“). Therefore heat 

quantity Q, + 1 abstracted out of the grid mesh in (n + 1) 
iteration steps will not lower the temperature below 
T,, but will cause a partial or complete change of the 
state of aggregation in the grid mesh. This heat 
quantity is 

Q n+l = IT{;:“- T,lp1A2c1. (6) 

The heat quantity which should be abstracted out of 
the grid mesh to make the medium inside the mesh 
change the state of aggregation completely is 

QP = p1A2L. (7) 

We can distinguish two cases: 

(a) Qn+I a Q,. 

In this case of (n + 1) iteration steps the medium inside 
the mesh changed the state of aggregation and the 
difference of heat quantity Q,, 1 -Q, causes further 
lowering of the grid mesh temperature according to the 
formula 

Tf’;“=T - Q II+1 - Q, 
P 

p2c2A2 
(8) 

(b) Q.+ I < Q,. 

In this case of (n + 1) iteration steps a part of the mesh 
surface determined by 

(9) 

changed the state of aggregation. In the next iteration 
steps we regard this grid mesh as a mesh in the phase- 
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change with the temperature equal to the phase change 3. COMPUTATIONAL EXAMPLES AND APPLICATIONS 

temperature Tr, calculated [according to the formula (1) To check the accuracy of results obtained while 
(9)] in every iteration step the surface which changes using the presented algorithm we have computed the 
the state of aggregation. If for the (n + m) iteration steps temperature distribution as a function of time for the 

n+m case given in [4]. The grid mesh was 20cm wide. All 

i=E,A;2 ’ A2 
physical properties determining the process were es- 
tablished according to the literature [4]. 

we assume that the whole surface of the grid mesh Figure 1 presents positions of phase-change boun- 

changed the state of aggregation then the difference dary after 1000, 2000 and 5000 h, respectively. (Con- 

“*In tinuous line-phase-change boundary positions taken 
from the literature, stepped line-phase-change boun- 
dary positions simulated by means of the method 

causes lowering of the mesh temperature as in case (a). presented above.) 
(2) To test the time efficiency of the algorithm we 

Such a model of phase-change requires choosing the have computed the temperature distribution as a 

time step in such a way that between two following function of time in square 30 x 30 m with the grid mesh 

iterations a phase-change boundary moves one grid being 20cm wide. Inside the region were located 

mesh forward at most. This condition is generally 33 heat receivers with the temperature at 237.5 K ; the 

fulfilled if the convergence condition (3) of the simple temperature of the medium was 289 K at the beginning 

explicit iteration scheme is fulfilled. of the process and the temperature of the phase-change 

The simple explicit iteration scheme has a precise of the medium was 271 K. Moreover 

physical interpretation based on the principle of 
conservation of energy which corresponds with the 
suggested method of introducing the phase-change. 
This feature and also the numerical simplicity of the 
scheme made us decide to use the scheme to solve the 
given problem. 

al = 0.264 x 10m6 mz s-i 
a =0.540x 10W6m2s-’ 
c:= 1.398x103Jkg-‘K-’ 
c2 = 1.147x103Jkg-‘K-l 
pi =p2=2.08x103kgm-3 

L= 45.22 x IO6 Jmb3. 

T__,.._. = 289 K 

Im 
- 

FIG. 1. Phase-change boundary positions after 1000, 2000 and 5000 h, respectively, from the beginning of 
cooling process. Stepped line-positions simulated by means of the presented method, continuous 

line-positions given in [4]. Thick black vertical line represents the heat receivers system. 
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The size of the region as well as the number and 
location of heat receivers and physical properties 

determining the process were chosen according to the 
real conditions observed while freezing the rock before 
shaft sinking. 

Computing has been carried for the period of 
5ooO h with the time interval (which fulfils the con- 

vergence condition) of 4 h. The calculation time of 
CDC 6000 computer was 2094s that is 1.7s per 
iteration. 

(3) For the process of freezing the rock it is 
important from the technical point of view to have the 
information concerning the location of phase-change 

boundary in a given time moment. This problem 
cannot often be solved by means of simulating tem- 
perature distribution because of the lack of sufficiently 
accurate information on thermal properties of the 
medium, especially on thermal diffusivities values. As 
the calculation, with the above-presented algorithm 
applied, has shown however, the decisive and essential 
factor for the technical application influence on the 
isotherm geometry is merely the geometry of the heat 

receivers’ location. Consequently, if inside the freezing 
region there is one hole allowing measurement of the 
rock temperature in a given time moment, then by 
means of simulating the process of phase-change 
boundary shift it will be possible to determine boun- 
dary location in this time moment, even if based on 

inaccurate values of thermal diffusivities. 
(4) The above-presented method of optimum simu- 

lation of the process of making a freezing jacket has 

been applied to the analysis of particular freezing 
holes’ participation in the freezing jacket growth. 
Taking this method into consideration we can evaluate 
the efficiency of the heat receivers’ configuration and 

the optimum (for the jacket growth speed) space 
location of the heat receivers. 
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TECHNIQUE NUMERIQUE PERFORMANTE POUR DETERMINER LA DISTRIBUTION 
BIDIMENSTONNELLE DE TEMPERATURE POUR N RECEPTEURS DE CHALEUR 

ARBITRAIREMENT SITUES AVEC CHANGEMENT DE PHASE 

R&urn&-On propose la nouvelle technique numtrique, tres rapide, pour dCterminer la distribution 
bidimensionnelle de temperature pour n rtcepteurs localists arbitrairement, avec changement de phase. 
L’algorithme est base sur un schtma simple A iteration explicite et le problime de changement de phase est 

rtsolu A partir du bilan de chaleur. On discute des exemples numeriques et des possibilitts d’application. 
Cette mtthode peut gtre utilisCe pour prtdire la forme de la rtgion gelee et sa modification dans le temps. 

NEUES NUMERISCHES VERFAHREN FOR DIE BERECHNUNG 
DER ZWEIDIMENSIONALEN TEMPERATURVERTEILUNG BEI N-WILLKURLICH 

VERTEILTEN WARMESENKEN MIT PHASENWECHSEL 

Zusammenfassung-Fiir die Berechnung der zweidimensionalen Temperaturverteilung bei n willkiirlich 
verteilten WLrmesenken mit Phasenwechsel wird ein neues, sehr schnelles numerisches Verfahren 
angegeben. Der Algorithmus basiert auf einem einfachen expliziten Iterationsverfahren und die Phasentide- 
rung wird in der WPrmebilanz erfallt. Es werden einige numerische Beispiele und Anwendungsmaglichkeiten 
diskutiert. Fiir eine Gefrierzone die sich wPhrend des Einfrierens von Gestein vor der Schachtabteufung 
bildet, kann mit dieser Methode die Form der Zone und ihre zeitliche Anderung vorausgesagt werden. 

3@@EKTMBHbIti YMCJlEHHbIfi METOA OflPEAEJIEHMR ABYMEPHOrO IlOJIR 
TEMfIEPATYP B n nPOM3BOJIbHO PACflOnOxEHHbIX IIPMEMHMKAX TEllJlA 

flPM aA30BbIX fIPEBPAuEHMRX 

Atmoraunn -. npe,SlOmeH HOBbtii yCTOfi’,HBblti ‘lL,C,W2HHk&i MeTOL, OllpeAe.leHMR llByMepHb1.X llO:leti 

TeMnepaTyp B n npos3eonbHo pacnonoxeH”brx TenJlOBblX npHeMHHKaX “pk, $alOBblX npespamenunx. 

,klrOpHTM 6a3HpyeTCs Ha npOCTOfi SlBHOti ,,TelXWIoHHOti CXeMe, a 3ana’fa 0 +a30BblX npeB,IdU,cHAnX 

pemaeTcn MeTofloM ‘rennoaoro GanaHca. PaccMaTpseamTca HeKoTopble YHc.TenHble IlpHMepbl M Bo3- 

MO)KHOCTH npWlOwteHk& MeTon MO%ZT llCflOjIb30BaTbCR &JtSl pdC’ieTa @OpMbI ‘3aMep3lUefi 06naCrH M 

H3bfeHeHw ee ~0 BpeMekwi. a ,raKae 06nac~~. o6pasymmeiks B 3aMep3alourek nopoae neperl 

npoxonroR UlaXTHOrO CTBOna. 


