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Abstract—The new, very fast numerical technique for determining two-dimensional temperature distri-
bution for n arbitrarily located heat receivers with phase-change is proposed. The algorithm is based on the
simple explicit iteration scheme, and the phase-change problem is solved according to heat balance. Some
numerical examples and possibilities of applications are discussed. This method can be used in predicting the
shape of a frozen region and its time changes, with the region forming during rock-freezing before shaft-

sinking.
NOMENCLATURE 21, density of the medium before the phase-

1 specific heat of the medium before the change;

phase-change ; P2 density of the medium after the phase-
¢y, specific heat of the medium after the phase- change.

change;
L, volumetric latent heat of fusion;
P, ratio of the surface of this part of the grid L. INTRODUCTION

mesh which changed the state of aggre- IN MANY technical processes it is necessary to at least

gation to the whole surface of the grid have approximate information about the temperature

mesh; distribution in media with arbitrarily located heat
Q.. heat quantity abstracted out of the grid receivers with the phase-change. Therefore it is

mesh during the » iteration step; necessary to look for algorithms describing such a
Q.. heat quantity which should be abstracted process with the accuracy sufficient from the technical

out of a grid mesh to make the medium point of view.

inside the mesh change the state of aggre- The algorithm presented in this paper has been

gation completely; constructed to predict the shape of the frozen
T, temperature of the phase-change of the region and its time changes, with the region which

medium; forms during rock freezing before the shaft sinking. In
T, temperature of the medium before the the freezing process freezing holes (heat receivers) are

phase-change; located approximately on the circle diameter 10-20 m.
T,, temperature of the medium after the phase-  The freezing process, lasting a few months causes the

change; formation of a frozen rock ring which protects against
T{", temperature of the medium inside the (i,k) water flooding during mining works.

grid mesh in n iteration step; There are many algorithms offering numerical sol-
0T/6n, normal derivative of the temperature; utions to the cooling down problem with the phase
t time; change [1-5]. In the above-mentioned case, however,

At ="+ — ™ timeinterval between iteration steps.

Greek letters
a, thermal diffusivity;

oy, thermal diffusivity of the medium before
the phase-change;

a3, thermal diffusivity of the medium after the
phase-change;

A surface of a grid mesh;

A3, surface of this part of a grid mesh which

changed the state of aggregation during the
n iteration step;

where the region considered is large and the time of the
process is long, most of them cannot be applied on
economical grounds.

The algorithm presented here is characterized by a
simplicity which makes the time of its computer
execution comparatively short. The results’ accuracy
makes it possible to put this algorithm into practice for
simulating the freezing process.

2. THE ALGORITHM DESCRIPTION

We are considering a homogeneous and isotropic
two-dimensional continuous medium. In this medium
there are n arbitrarily located heat receivers.
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We assume that:

heat receivers have finite sizes;

during the whole process the temperature of the

receivers is constant;

the temperature of the receivers is lower than the

temperature of the phase-change of the medium;

heat contact of the receivers with environment is
ideal;

at the time of starting the process the medium

temperature is constant;

far enough from the heat receivers the temperature

distribution is time constant.

To solve the problem of the temperature distri-
bution and its time variations for such a model it is
enough to solve general conduction equations sep-
arately for those regions of the medium where the
temperatureis lower and higher than the phase-change
temperature with the continuity condition on the
phase boundary.

Conducting equations are

aT, RT, T,
i b i P = 1, 2 ; 1
a ‘(axz toE) ! (1a)
continuity condition
0T, oT,
A — =0y ——
on on on the phase-change boundary (lb)

To find a numerical solution to these equations we
used a finite-difference method. We chose ‘a simple
explicit iteration scheme’, which in the case of a
quadratic grid looks like this [6]:

aAt
T = o+ 5

[T+ TE a+ Ty + T —4TE] ()

with the convergence condition

A2
At £ 025 . (3)

Equation (2) cannot be applied to grid meshes
across which goes a phase-change boundary because a
constant thermal diffusivity has been assumed in the
formula. For such cases we use the following
modification

At
TR = T+ o [T, — TP

+aD(TE, = T + (T s = T
+a®(TT — T{] <

in which coefficients 'V, a®, a'®, «'* are selected
according to the state of aggregation of the grid meshes
which are in contact with the grid mesh (i, k).
The following are possibilities of grid mesh contact:
Both meshes are before the phase-change. Then the
sufficient coefficient of thermal diffusivity in formula
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(4)is the same as the thermal diffusivity coefficient of
the medium before the phase-change.

Both meshes are after the phase-change. The thermal
diffusivity coefficient for such contact is the same as
the thermal diffusivity coefficient of the medium
after the phase-change.

Both meshes are in phase-change. The choice of a
thermal diffusivity coefficient is of no importance
because of the zero temperature difference.

One of the grid meshes is before the phase-change
and the other one s in or after the phase-change. We
assume that the sufficient thermal diffusivity coef-
ficient in equation (4) is the same as the thermal
diffusivity coefficient of the medium before the
phase-change.

Ore of the grid meshes is in the phase-change and the
other one is after the phase-change. In this case we
assume that the sufficient thermal diffusivity coef-
ficient in (4) is

a=ayp+a(l —p) (%)

In making an analysis of the phase-change assume
that, for the grid mesh (i, k), in the nth iteration step
T} > T, and that the temperatures of the adjacent
meshes are such that the temperature T?", ! calculated
according to equation (4) is smaller than T, That
means that the phase change should start in this grid
mesh in the interval of time t** ') — (™, Therefore heat
quantity Q, , , abstracted out of the grid mesh in (n + 1)
iteration steps will not lower the temperature below
T, but will cause a partial or complete change of the
state of aggregation in the grid mesh. This heat
quantity is

Quir = | TV = Tyl py A2cy. (6)

The heat quantity which should be abstracted out of
the grid mesh to make the medium inside the mesh
change the state of aggregation completely is

Q,=pA’L. M
We can distinguish two cases:

(a) Qn+l 2 Qp'

In this case of (n+ 1) iteration steps the medium inside
the mesh changed the state of aggregation and the
difference of heat quantity Q,,, —Q, causes further
lowering of the grid mesh temperature according to the
formula

_Qn+l _Qp_

8
pacy A? ®

+1) _
Tﬁnk - Tp

(b) Qn+l < Qp'

In this case of (n + 1) iteration steps a part of the mesh
surface determined by

’ Qn+l
Barn =875~ ©)

changed the state of aggregation. In the next iteration
steps we regard this grid mesh as a mesh in the phase-
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change with the temperature equal to the phase change
temperature T, calculated [according to the formula
(9)] in every iteration step the surface which changes
the state of aggregation. If for the (n + m)iteration steps

n+m

Y AZ>A?

i=n+1

we assume that the whole surface of the grid mesh
changed the state of aggregation then the difference

n+m

z: Qi_'Qp

i=nt+1

causes lowering of the mesh temperature as in case (a).

Such a model of phase-change requires choosing the
time step in such a way that between two following
iterations a phase-change boundary moves one grid
mesh forward at most. This condition is generally
fulfilled if the convergence condition (3) of the simple
explicit iteration scheme is fulfilled.

The simple explicit iteration scheme has a precise
physical interpretation based on the principle of
conservation of energy which corresponds with the
suggested method of introducing the phase-change.
This feature and also the numerical simplicity of the
scheme made us decide to use the scheme to solve the
given problem.

Rmva=289K
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3. COMPUTATIONAL EXAMPLES AND APPLICATIONS

(1) To check the accuracy of results obtained while
using the presented algorithm we have computed the
temperature distribution as a function of time for the
case given in [4]. The grid mesh was 20 cm wide. All
physical properties determining the process were es-
tablished according to the literature [4].

Figure 1 presents positions of phase-change boun-
dary after 1000, 2000 and 5000 h, respectively. (Con-
tinuous line-phase-change boundary positions taken
from the literature, stepped line—phase-change boun-
dary positions simulated by means of the method
presented above.)

(2) To test the time efficiency of the algorithm we
have computed the temperature distribution as a
function of time in square 30 x 30 m with the grid mesh
being 20cm wide. Inside the region were located
33 heat receivers with the temperature at 237.5K ; the
temperature of the medium was 289 K at the beginning
of the process and the temperature of the phase-change
of the medium was 271 K. Moreover

a; =0264x 10 °m?s™!

ay = 0.540x 10" 6 m?s~!

¢, =1398x10°Jkg 'K™!
c; =1147x10%Jkg 'K™!

Py =py=208x10°kgm™3
L=4522x10°Jm™3,

FIG. 1. Phase-change boundary positions after 1000, 2000 and 5000 h, respectively, from the beginning of
cooling process. Stepped line—positions simulated by means of the presented method, continuous
line—positions given in [4]. Thick black vertical line represents the heat receivers system.
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The size of the region as well as the number and
location of heat receivers and physical properties
determining the process were chosen according to the
real conditions observed while freezing the rock before
shaft sinking.

Computing has been carried for the period of
5000 h with the time interval (which fulfils the con-
vergence condition) of 4h. The calculation time of
CDC 6000 computer was 2094s that is 1.7s per
iteration.

(3) For the process of freezing the rock it is
important from the technical point of view to have the
information concerning the location of phase-change
boundary in a given time moment. This problem
cannot often be solved by means of simulating tem-
perature distribution because of the lack of sufficiently
accurate information on thermal properties of the
medium, especially on thermal diffusivities values. As
the calculation, with the above-presented algorithm
applied, has shown however, the decisive and essential
factor for the technical application influence on the
isotherm geometry is merely the geometry of the heat
receivers' location. Consequently, if inside the freezing
region there is one hole allowing measurement of the
rock temperature in a given time moment, then by
means of simulating the process of phase-change
boundary shift it will be possible to determine boun-
dary location in this time moment, even if based on
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inaccurate values of thermal diffusivities.

(4) The above-presented method of optimum simu-
lation of the process of making a freezing jacket has
been applied to the analysis of particular freezing
holes’ participation in the freezing jacket growth,
Taking this method into consideration we can evaluate
the efficiency of the heat receivers’ configuration and
the optimum (for the jacket growth speed) space
location of the heat receivers.
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TECHNIQUE NUMERIQUE PERFORMANTE POUR DETERMINER LA DISTRIBUTION
BIDIMENSIONNELLE DE TEMPERATURE POUR N RECEPTEURS DE CHALEUR
ARBITRAIREMENT SITUES AVEC CHANGEMENT DE PHASE

Résumé—On propose la nouvelle technique numeérique, trés rapide, pour déterminer la distribution
bidimensionnelle de température pour n récepteurs localisés arbitrairement, avec changement de phase.
L algorithme est basé sur un schéma simple a itération explicite et le probléme de changement de phase est
résolu a partir du bilan de chaleur. On discute des exemples numériques et des possibilités d’application.
Cette méthode peut étre utilisée pour prédire la forme de la région gelée et sa modification dans le temps.

NEUES NUMERISCHES VERFAHREN FUR DIE BERECHNUNG )
DER ZWEIDIMENSIONALEN TEMPERATURVERTEILUNG BEI N-WILLKURLICH
VERTEILTEN WARMESENKEN MIT PHASENWECHSEL

Zusammenfassung—Fiir die Berechnung der zweidimensionalen Temperaturverteilung bei n willkiirlich
verteilten Wirmesenken mit Phasenwechsel wird ein neues, sehr schnelles numerisches Verfahren
angegeben. Der Algorithmus basiert auf einem einfachen expliziten Iterationsverfahren und die Phasenande-
rung wird in der Wirmebilanz erfaBt. Es werden einige numerische Beispiele und Anwendungsmoglichkeiten
diskutiert. Fiir eine Gefrierzone die sich wihrend des Einfrierens von Gestein vor der Schachtabteufung
bildet, kann mit dieser Methode die Form der Zone und ihre zeitliche Anderung vorausgesagt werden.

IOOEKTUBHBIA YUCJIEHHBI METOJI ONMPEAEJEHUSA ABYMEPHOIO MoOJist
TEMHOEPATYP B n NMPOU3BOJIbHO PACIIOJIOXKEHHBLIX MPUEMHHUKAX TEIJIA
NMPU ®A30BBIX MPEBPAHIEHUAX

AunHoTaumrst — [1pe/1oXeH HOBBIA yCTOHYMBBIH 4YHCIEHHbI METOJ ONpeAeiIeHUs /BYMEPHBIX Nosel

TEMNEPATYP B 71 POM3BOJIBHO PACNONOKEHHBIX TEMJIOBBIX MPUEMHHKAX NPU (Pa30BbIX NpeBpaLLCHUAX.

Anropur™M 6a3upyeTcs Ha NpPOCTOH ABHON MTEPALIMOHHOM cXeMe, a 3aJaya O Ha30BbIX NMPEBPAILEHUAX

pellaeTcs METOAOM TenaoBoro Hasmadca. PaccMaTpMBalOTCH HEKOTOpbIE YMCIIEHHBIE 1IPUMEPbI H BO3-

MOXHOCTH MPUIOKEHHH. METOA MOXET MCNOJIb30BATLCA I8 PacHeTa POpPMBL 3aMepsilei 06:1acTH ¢

MU3MEHEHHS €€ BO BPEMEHH, a4 Takxke obnacTtu, obpalywlueiica B 3aMeplatollleit nopone 1epel
NPOXOIKOMR LWAXTHOTO CTBOJIA.



